野花社区日本最新中文,性一交一乱一伦一色一情丿按摩 ,亚洲综合激情另类专区,欧美成本人视频免费播放

歡迎光臨錦工風(fēng)機官方網(wǎng)站。提供優(yōu)質(zhì)羅茨鼓風(fēng)機,羅茨風(fēng)機,回轉(zhuǎn)式鼓風(fēng)機星型供料器,氣力輸送設(shè)備等產(chǎn)品

Numerical of Transient Flow in Roots Blower

Numerical of Transient Flow in Roots Blower

The performance of rotary positive displacement machines highly depends on the operational clearances. It is widely believed that computational fluid dynamics (CFD) can help understanding internal leakage flows.

Developments of grid generating tools for analysis of leakage flows by CFD in rotary positive displacement machines have not yet been fully validated. Roots blower is a good representative of positive displacement machines and as such is convenient for optical access in order to analyse internal flows. The experimental investigation of flow in optical roots blower by phase-locked PIV (Particle Image Velocimetry) performed in the Centre for Compressor Technology at City, University of London provided ?the velocity field suitable for validation of the simulation model. This paper shows the results ?of the three-dimensional CFD transient simulation model of a Roots blower with the dynamic numerical grids generated by SCORG and flow solution solved in ANSYS CFX flow solver to obtain internal flow patterns. The velocity fields obtained by simulation agree qualitatively ?with the experimental results and show the correct main flow features in the working chamber. There are some differences in the velocity magnitude and vortex distribution. The flow field in roots blower is highly turbulent and three-dimensional. The axial clearances should be included, and the axial grids should be refined in the simulation method. The paper outlines some directions for future simulation and experimental work. The work described in this paper is a part of the large project set to evaluate characteristics of the internal flow in rotary positive displacement machines and to characterize leakage?flows.

Rotary positive displacement machines are widely used in many industrial fields. Depending on the application they may contain one or more rotating elements and a stator. Typical representatives of a single rotor machine are progressive cavity pumps and single screw compressors. Twin rotor machines are more common. These can be designed either with straight lobes as in roots blowers and gear pumps, or with helical lobes used in screw compressors, expanders and pumps. Screw machines can handle single phase fluids in the form of a gas, vapour or liquid or multi-phase fluids mixed from any combination of single phase fluids and solids and may operate above or under atmospheric pressures. Liquid and multiphase pumps are often configured with multiple rotors. In all these machines, gaps between rotating and stationary parts have to be maintained in order to allow a safe and reliable operation but are desired to be minimal in order to reduce leakage flows, which play critical role in theperim

performance. The challenge is to maintain the size of the gaps due to deformations of the machine elements which could be caused by thermal of physical loads.

Many researchers have studied leakage flows through clearance gaps in rotary positive displacement machines both experimentally and numerically. Numerical methods are mostly based either on chamber modelling [1], or computational fluid dynamics (CFD) model [2, 3]. In chamber models, it is usually assumed that the momentum change in the main domain is negligible due to the internal energy being dominant while the velocity of the leaking fluid is obtained based on the assumption of the isentropic flow through the nozzle. A CFD model allows more accurate calculation of velocities both in the main domain and in the leakage paths by numerically solving governing conservation equations such as mass, energy and momentum. This is of course subject to availability of an accurate numerical mesh which can capture both, the main flow domain and clearances. The latest developments in grid generation for screw machines described in detail in Rane et al. [4, 5] have led to the mesh which can be used in all flow calculations and for most rotary positive displacement machines. This grid generation methods allows use of any commercially available CFD solvers. The size of the mesh, the speed of its generation as well as the speed of calculation by commercial solvers is suitable for industrial application. However, it is yet not fully validated if it sufficiently accurately captures flow in clearances.

Numerical procedures for calculation of performance using either chamber models or 3D CFD are usually validated by measurements of the integral parameters such as the total mass flow rate and power as shown in recent studies by Kovacevic and Rane [6]. These indicate that the clearance flow is mostly well captured. However, unless the local velocities are measured, the leakage models cannot be fully validated. In addition, even the velocity distribution in the main flow of a rotary positive displacement machine has not been studied in detail experimentally. Therefore, for the full validation of numerical calculations it is required to obtain accurate measurements of the flow field both in the main working domain and in the clearance gaps of a rotary positive displacement machine.

山東錦工有限公司
地址:山東省章丘市經(jīng)濟開發(fā)區(qū)
電話:0531-83825699
傳真:0531-83211205
24小時銷售服務(wù)電話:15066131928


上一篇:
下一篇:
錦工最受信賴的羅茨風(fēng)機回轉(zhuǎn)風(fēng)機品牌
版權(quán)所有:Copright ? www.dangzhua.cn 山東錦工有限公司
備案信息:魯ICP備11005584號-5 ?
地址:山東省章丘市相公工業(yè)園
電話:0531-83825699傳真:0531-83211205 E-mail: sdroo@163.com 網(wǎng)站地圖
羅茨風(fēng)機咨詢電話
国产精品美女久久久网av| 影音先锋男人站| 日韩一区精品视频一区二区| 久久亚洲精品国产亚洲老地址| 精品一区二区三区无码av久久| 亚洲精品国产福利一二区| 欧美成人秋霞久久aa片| 国产亚洲精品精华液| 国产末成年女av片| 三级特黄60分钟在线观看| 日日狠狠久久8888偷偷色| 日本免费高清线视频免费| 女邻居的大乳中文字幕| 黄瓜视频在线观看| 亚洲 a v无 码免 费 成 人 a v| 少妇太爽了在线观看| 久久精品国产亚洲av麻豆长发| 国产精品爽爽久久久久久| 日本成熟少妇喷浆视频| 亚洲av无码国产精品色午夜字幕| 久久无码人妻一区二区三区| 国产乱人伦app精品久久| 好吊妞无缓冲视频观看| 国产激情久久久久影院老熟女免费| 成人性生交大片免费看中文| 在线天堂中文www官网| 最近在线更新8中文字幕免费| 另类老妇奶性生bbwbbw| 国产亚洲视频中文字幕97精品| 亚洲国产中文字幕在线视频综合 | 天堂资源中文网| 无码精品尤物一区二区三区| 免费人成视频在线播放| 性一交一乱一伧国产女士spa| 日韩在线一区二区三区免费视频| 欧洲精品码一区二区三区免费看| 国产综合内射日韩久| 十八岁以下禁止观看黄下载链接 | 亚洲成av人片在线观看无码不卡 | 国产成人精品无码片区在线观看| 国产精品丝袜高跟鞋|